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ON A CLASS OF UNIVERSAL 
SEQUENCE SPACES 

BY 

JOSEPH Y. T. WOO* 

MODULAR 

ABSTRACT 

The class of all subspaces of quotient spaces of I, t~l, contains all separable 
Orlicz sequence spaces. 

I. Introduct ion 

Recently,  Johnson and Zippin [2] proved that if a subspace of a quotient 

space of lp, p > l, has a basis, then it can be decomposed into the form (t~) (3;.)p, 

where dim G, < ~. It is natural to inquire whether  this structure theorem can be 

generalized to the next  simplest class of spaces, namely lp (~ lq. The answer 

is no. Rosenthal [l I] showed that if l < q < 2, then the class of subspaces of 

quotients of  lq O/2  contains every Orlicz sequence space IM, where 

M(x) M(x) 
(*) x .  is increasing, x 2 is decreasing. 

In particular, the class of subspaces of quotients of lq Q 12 contains l. for  all 

r E [q, 2]. So no structure theorem similar to that obtained by Johnson and 

Zippin is possible. 

PROBLEM. Can Rosenthal 's result be generalized to the case lq (~)L, where 

I _ - _ _ q < s < ~ ?  

The purpose of this paper is to answer the above problem in the affirmative. 

In order to analyze this problem, we have to describe Rosenthal 's  result more 

fully. In [10], he obtained an ~o-space Xp, p > 2 ,  which is spanned by a 

sequence of independent random variables in L.. Xp is also isomorphic to a 

subspace of l, @12. Let  Xq = X * ,  where l/p + l/q = 1. Then every Orlicz 

sequence space IM, where M satisfies (*), can be imbedded into Xq [l 1], and 

thus is a subspace of a quotient of lq ~ 12. The proofs of these results use 
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probabilistic methods,  and since Khintchine 's  Inequality is used in a nontrivial 

way,  we cannot  replace 2 by s. 

However ,  there is another  way to look at the spaces X,,p > 2. X, has an 

unconditional basis {e.}, and Ex,e .  converges  if and only if 

Emax{ix. l" ,  w~.x~}<~, where w ={w.}  is a sequence of posit ive numbers  

satisfying lim w. = 0 and Z w2. p/~"-2~ = ~. Put M.(x) = max{x ~, w2.x '} for x => 0. 

Then M. is an Orlicz function, and so X, is a modular  sequence space (see Sec. 

2 for definitions). We can now generalize X, to a space X,,,, where ~ > p > r -> 

1. We simply define Xo., to be the modular  sequence space l{Mo}, where 

= ~ ~ ,. =X. .~ ,  where l / p +  M.(x) m a x { x " , w . x  }. Our aim is to prove that if Y.~ * 

1/q = I, r > 1, and 1/r + l/s = 1, then Yq., contains every Orlicz sequence 

space IM, where 

M(x) is increasing, M(x) is decreasing. 
(**) x" x '  

As X,.r is a subspace of I, @ Ir, this would solve the problem. 

As is apparent  f rom the above,  we shall use the techniques of modular  

sequence spaces to solve the problem. Detailed accounts  of the propert ies  of 

such spaces can be found in [13] and [14]. A summary  of the important  results 

used in this paper  is given in Sec. 2, mostly without proofs.  Section 3 is devoted 

to the construct ion of the spaces X,,,, while the main results are proved in Sec. 

4. We prove  that Y~.~ is universal in the class of modular sequence spaces 

l{M,}, where M, satisfies (**) for all but finitely many n 's .  In particular, Y~.~ 

contains all IM, where M satisfies (**). Thus the problem is solved. 

As byproducts ,  we also obtain the following results. The first is a representa-  

tion of Orlicz functions.  Suppose M is an Orlicz function satisfying (**). Then 

M is equivalent  to the uniform limit of functions of the fo rm E,k-~V.+,N~(aix), 

where k . < k 2 < . . ,  are positive integers, a~ _->0, and N~(x)=min{w:.Sx~,x"}, 
with w~ > 0 and lim w~ = 0. The other result is an answer  in the affirmative to a 

question raised by Lindenstrauss:  Does there exist a nonsymmetr ic  uncondi- 

tional basis so that the span of every block of constant  coefficients is 

complemented?  The  answer  is provided by the natural basis of X ~  which has 

this property .  

2. Definitions, notations and preliminaries 

Let  M : [0, ~)-->[0, ~) be a continuous strictly increasing function satisfying 

M(0) = 0 and iim~_~M(x) = ~. M is called a ¢-function. Note that in [6] and [8] 
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M is only required to be monotonic increasing, and M ( x ) > 0  for all x >0 .  

However ,  nothing is gained by this more general condition as far as this paper 

is concerned.  In fact  by restricting to strictly increasing functions,  we now have 

M ' :  [0,~)--~[0,~), and M - '  is also a ~-function.  If M is convex,  then M is 

called an Orlicz [unction. 

DEFINITION. Let  0 _--< r < p --< oo. A q~-function M is said to be between p and r 

if (M(x)) /x  r is increasing on (0,~), and (M(x)) /x  p is decreasing on (0,~) for  

p < ~ .  Following the terminology of [1], we let K ( p , r )  be the set of all 

C-functions between p and r. 

Note  that every ~-funct ion is in K(~ ,0) ,  every Orlicz function is in K(oo, l), 

and every concave ~-funct ion is in K(1,0) .  If p,>-_pz, and r.<-rz, then 

K (p2, r2) C K (p ~, rO. 

The following theorem of Matuszewska is of fundamental  importance. As it 

is stated in a different form in 2.7 of [7], we give the proof here. 

THEOREM 2.1. (Matuszewska) (a) Let M E K (p, 1), where p <- oo. Then there 

exists an Orlicz [unction N E K (p, 1), with continuous second derivative, such 

that 

M(4)<=N(x)<=M(x)  for all x >-O. 

(b) Let M E K ( I , r ) ,  where r >-0. Then there exists a concave q>function 

N E K( I ,  r), with continuous second derivative, such that 

M(x)<=N(x)<=4M(x)  [or all x >-0. 

PROOF. (a) Let  F ( x ) = f~ ( M ( t ) )/ t dt. As M ~ K (p, 1), ( M ( t ) )/ t is increasing 

on (0, ~). Hence  F is an Orlicz function, and F has a continuous derivative. It is 

not hard to show that F E K(p,  1). By monotonicity of (M(t))[t,  we have 

= x M(x )  > I~M(t)  . M ( x )  x = ~ d t  = F ( x )  

= ~ T dt >--2----7- 

So we have F E K(p,  I), with continuous derivative, such that 

a . x  
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Now apply the above to F instead of M, and we obtain an Orlicz function 

N E K(p, 1), with continuous second derivative, such that 

> N(x)>-_ F(2 ) for  all x F(x) >-0, 

i.e. M(x) > N(x)  > M(4 ) for all x _->0. 

(b) Consider the q~-function M -*. It is easy to show that M-'  E K(r- ' ,  l). Hence 

by (a), we have an Orlicz function F E K ( r  -t, 1), with continuous second 

derivative, such that 

M-'(x)>=F(x)>=M-'(4 ) for  all x =>0. 

Let  N = F -~. Then N is a concave q~-function between 1 and r, with continuous 

second derivative, and satisfies 

M(x) <= N(x)  <= 4M(x) for  all x => 0. Q.E.D. 

DEFINmON. Let  M , N  be ,p-functions. M is said to be equivalent to 
N ( M -  N ) i f  there exist positive numbers a, b, K, L, Xo such that 

KM(ax ) <= N(x  ) <= LM (bx ) 

for  all x E [0,Xo]. 

COROLLARY 2.2. Let M E K (p, r),  where r > O. Suppose M is not equivalent 
to x'. Then there exists an Orlicz function F E K(pr- ' ,  I), with continuous 
second derivative, such that 

(a) M(x ~/'/4) <- F(x) < M(x ,i,) for all x > O, 
(b) F'(x) is strictly increasing and continuous, 
(c) (F(x))lx is a q~-function. 
Thus we have a function N ~ K(p, r), with continuous second derivative, 

such that 

M(4)<=N(x)<=M(x) forall x>=O, 

and (N(x))/x" is a q~-function. 

PROOF. Let  G(x)=M(xU') .  Then GEK(pr - I ,1 ) .  By Matuszewska's  

Theorem,  we have an Orlicz function F E K(pr- ' ,  1), with continuous second 

derivative, such that 
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G(4 ) <- F(x)  < - G(x)  for all x >0 .  

M is not equivalent to x" iff G is not equivalent to x. As F is equivalent to G, F 

is not equivalent to x. F is convex, so F '  and (F(x)) /x  must be strictly 

increasing, and l im~o(F(x) ) /x  =0.  Thus (F(x)) /x  is a c-funct ion.  Putting 

N ( x )  = F(x ' ) ,  we have the desired result. Q.E.D. 
We now define q~-spaces and modular sequence spaces. Let {M,} be a 

sequence of q~-functions. Let l{Mn} be the set of all sequences {x,} satisfying 

EM.(lx.[tt)<~ for some t >0 .  Let 

I [{x .}[ l=in f{ t>O'~M.{[~-J)<=t  I • 

Then I1" II is a quasinorm on l{M.}, and (I{M.},ll. [I)is an F-space. We call such 

kind of spaces ~o-spaces, If all the M°'s are equal, we have the generalized 

Orlicz sequence space considered in [6] and [8]. 

If all the M. ' s  are Orlicz functions, then /{M.} can be normed by 

(l{Mo}, I11 • Ill) is cal led a modular .sequence space. The  spaces  (l{Mo},ll" II) and 
(I{M,}, II1" III) are isomorphic under the identity map. So whenever we are 

considering sequences of Orlicz functions, I['[I will actually denote HI" Ill, 

unless otherwise stated. 

A sequence of q~-functions {M,} is said to be normalized if M.( l )  = 1 for all 

n. If {M,} is not normalized, let N. (x )  = M, (a,x), where M. (.a.) = 1. Then {N.} 

is normalized and the map T:I{N.} - -~I{M.}  given by T{x.}=-{a.x,} is an 
isomorphism. So if we are only considering the linear topological properties of 

I{M,}, we can always assume {M~} to be normalized. 
The most important concept connected with q~-spaces is that of equivalence. 

DEFINITION. Let {M, }, {?4, } be sequences of C-functions, {M, } is said to be 

equivalent to {N,} ({M, } - {N, }) if l{Mo} = I{N,} as sets. 
It is easy to show, using the closed graph theorem, that if {M,} - {N,.}, then 

the identity map I:  l{M,}---~l{N.} is an isomorphism. 

PROPOSmON 2.3. Let {M,}, {N°} be sequences oleo-functions satisfying one 

of  the following conditions : 
(a/ There exist x,, x,_ such that inf M. (x,) > 0, inf N. (x0 > 0, and there exist 

K, L, a, b, xo > 0, no ~ Z + such that for all n > no and x E [0, Xo], 
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KM.(ax)  <= N.(x)  <= LM,(bx ). 

(b) There exist x,,x2 such that i n f M . ( x 0 > 0  and i n fN. (x2)>0 ,  and for 

some a >->_ max {x,,x2}, 

sup { M , ( x ) - N , ( x ) ] < ~ .  
n = l  x E[O.c~ l 

Then {M, } - {N, }. 

DEFINITION. Let {M.} be a sequence of q~-functions, and let 0 = r < p = o0. 

We say that {M.} is between p and r, if Mo E K(p, r) for all but finitely many 

n's .  We again denote the set of all {M,} between p and r by K(p, r). 

PROPOSITION 2.4. Let {M, } be a sequence o[ q~-functions. Then the following 

are equivalent : 

(a) {M.} ~ K(p, r). 

(b) {M,(x ' )}E K(pt, rt) [or ( all I t  ~(0,~) .  
\some / 

(c) There exists n o > 0  such that for all X E[0,  1], x >-0 and n > no, 

PM, (x) <= M,()tx) <= )t rM.(x ). 

I[ M, is absolutely continuous for all n, then the above are equivalent to : 

(d) There exists no such that 

r < xM'(x)  < 
= M.(x-----T=p 

for all n > no and x > 0  such that M' (x)  exists. 

THEOREM 2.5. (Lindberg) Let {M.} be a normalized sequence of q~-functions 

(Orlicz [unctions), and {M,} E K(p, r) [or some 0 < r < p < oo. Then 

(a) {M,} is uniformly equicontinuous and uniformly bounded on [0, 1]. 

(b) There exists a subsequence {M.~} and a q~-function (Orlicz [unction) 

M E K(p, r) such that 

sup I M . ~ ( x ) - M ( x ) l < o o .  
k = l  x E[0,1]  

(c) l{M,} contains a complemented subspace isomorphic to IM. 

If {M,} E K(p, r) for some p < ~, it is not hard to show that the unit vectors 

of l{M,} form &n unconditional basis. If M ~ K(p, r) for some p < ~, then the 
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unit vectors of IM form a symmetric basis. Now suppose IM and l{M.} are both 

Banach spaces, and IM is isomorphic to a subspace of l{M.}. Then by the 

Bessaga-Pelczynski Theorem, the unit vectors of IM is equivalent to a block 

basis of I{M.}. We can assume {M.}, and the bases, to be normalized. Let  {e.}, 

{fo} be the unit vector  bases of IM, l{M~}, respectively. Then we have a. -> 0, 

and natural numbers ], < j2 < "" • such that {e. } is equivalent to the normalized 

block basis {Ei%~÷,a.f~}~_,. It is not hard to show that this block basis is 

equivalent to the unit vector  basis of the modular sequence space I{Nk }, where 

]k+l 

(1) Nk(x)--  ~] M.(a.x) .  
n - j k  + l  

By passing to a subsequence of {Nk}, and using Theorem 2.5, we have 

sup IM(x) -  g.(x)l  < ~. 
k = l  x E[O. II 

We thus have the following proposition: 

PROPOSITION 2.6. (Lindberg) (a) Let {M~} be a normalized sequence of 

Orlicz functions between p and r, where 1 <= r < p < oo. Suppose M is an Orlicz 

function such that IM is isomorphic to a subspace of l{M.}. Then there exists a 

sequence {Nk}, satisfying (I), such that 

sup IM(x) -  N.(x)l < ~. 
k - I  x ~[O, II 

(b) Let {M,}, M be as in (a). Then M is equivalent to an Orlicz function in 
K(p,r) .  

Let  {M, } be a sequence of Orlicz functions, none of which is equivalent to 

the function x. Then we can form the Young complement  M* of M,. i.e. M* is 

an Orlicz function satisfying 

M*' (y)  = sup M'.(x), 
x ~ y  

where M" is the right derivative. 

Let  c{M.} be the set 

{ { x . } E l { M . } ' ~ M ° ( X ~ " ~  <oo for all t > 0 }  
\ t /  

Then c{M~} is a closed subspace of l{M.}, and the unit vectors form an 

unconditional basis of c{M.}. 
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PROPOSITION 2.7. Let {M, } be a sequence o[ Orlicz functions. 

(a) c{M,}  = I{M,} if {M,} E K(p,  1) [or some p < ~. 

(b) Suppose none of the M" s is equivalent to x. Then c{M,}* is isomorphic to 

l{M*}. 

(c) Let {M~} E K(p,  1) for some p < ~, and none of the M'.s is equivalent to 

x. Then l{Mn}* is isomorphic to l{M*}. 

3. The spaces Xp.q 

We are going to generalize the spaces X~,p > 2, of [10] in this section. We 

then show that our  generalizations are modular sequence spaces. A by-product  

of our considerations of the properties of these spaces is that we have 

answered in the affirmative a question raised by Lindenstrauss: Does there 

exist a non-symmetric basis such that every block of constant coefficients 

spans a complemented subspace? 

Let  o o > p > r  > 1 ,  and let {f.}, {g.} be the unit vector bases of lp and i, 

respectively. Let  w = {w.} be a sequence of positive numbers, and let e. = 

f.  + w.g.. We define Xp.,.w to be span {e.} in (l, ~) l,)®. {e.} is called the natural 

basis of  Xp ..... If we replace Ip by co in the above definition, we obtain a 

subspace of (Co@lr)®, denoted by X ...... 

It is not hard to see that {e.} is equivalent to the unit vector  basis of ip if 

~w.~'/~-~ < oo (and equivalent to the unit vector  basis of Co if Ew~ < ~ in the 

case p = ~). On the other hand, if inf w, > 0, then Xp,,,~ is isomorphic to lr. We 

thus have the following cases: 

Case (i). inf w. > 0 and Xp .... ~ l,. 

Case (ii). Ew~'l(p-'~ < oo and Xp .... - lp (or co). 

Case (iii). {n E Z+: w~ ->_ ~} is infinite, and 

E w~'/(P-'>< oo. 
w .  <~ 

Then X~.,.w - l~ @ l, (or Co G lr for  p = oo). 

Case (iv). inf wn = 0 and Y, . . . .  w~ '/`~-'~ = o0 for all ¢ > 0. 

The simplest case for which (iv) can occur  is when 

(2) lira w, = 0 and ~ w~ ""~-'' = ~. 

( ~ w ~ , = ~  for p = ~ . )  

Our aim is to show that if w, w' satisfy (2), then Xp .... -Xp.,,w,. 
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PROPOSITION 3.1. Let ~ >=p > r >= 1, and let {e,} be the natural basis o f  

Xp ..... Suppose {E~} is a family of  disjoint finite subsets o[ Z ÷. Let  

h i=  ~, w'/<P-'~ e. ( =  y~ e, for p = oo) 

(3) h, = h, w :"(P-" ') ( = h, fo r  p = oo) 
J 

.,_-(o~, w:.,,~ .,) ,~-.,'~. (_-(~., w:)".,o.~ __o~) 
Then the block basis {/~j} is isometrically equivalent to the natural basis o[ 

Xp.,.~, where/3 = {/3~}, and there exists a projection oy norm 1 o[ Xp.r.w onto the 

closed linear span o[ {/~j} in Xp ..... 

PROOF. The proof is a generalization of that of Lemma 7 in [10]. First 

consider the case p < oo. Then 

Z A,h, = max 2 1~.,1 p w.P"'-"' w:""P "') ] , 
nEEI t 

\ tip r r \  l /r] 

So {/~} is isometrically equivalent to the natural basis of X~.r.p. 

We now define P : Xp .... ~ [/~j], with IIPII = z.  Let k E Z +. Define 

( ~ , ) ~ ( ~  ) P A.e, = A, w ,<P'-"I~P-"]I~ ( z.,x;' w~,,<p-,, -' hi. 
' =  n ~ I k n e e  i 

The sum on the right is a finite sum. So P is well defined. 

~ )  { [ ~ l ~ . w  n ~ , 1,,, , l - , ,  " ' m  / ' 
n.Ej ncF~ m . E  I J 

X,~.w~'-""-" " Z Z w: "'~-'0''~ 
n~Ej nGE i me~ 

( p r - r ) l ( p  - r )  = m a x  ~, )t.W. Z w~r/(P-')\i-pli/p 

°-, ""'""-") ] l  



202 J.Y.T. WOO 

--< max { [ ~  (~E [ A. ,P)(.~u, w"."("-") "-' (.~E, W"r/(~-r))'-"] '/"' 

It is clear that we can extend P by 

P(~=, A.eo)= __~ (.~, A.w~'-"/'P-")(,,~wP.'/<P-'))-'h, 
and we have 

It is obvious that P is a projection, and fFPII = 1. 
Now consider the case p = ~. Then 

I~-'.&/~i =max{suPlA, l, [,~,(.~Ej IAjl~w.')] '/'} 

max " "\ '/"/ 

So {/~j} is isometrically equivalent to the natural basis of X®..~. 
As in the case p < m, we define 

P(~a.e.)=~(,,~e a.wQ(.~E w(,)-'h, • 
Then P is a projection, and 

IP(~A.e.)]  { ,  ,,~eA.wZ = max sup (.~e, w~)-', 

• ~ \1'1"1 

=<max sup sup IX.I. ~ ~ w[} ] I 
j n ~ E  i h E E l  n ~ E  1 

.-I \,-q,lq 
_-<max{sup Ia.I, [ ~  (~e, Ia"l'w;)(.~E, w.') (.~e, w~} ] } 

Israel J. Math., 

Q.E.D. 
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COROLLARY 3.2. Suppose w = {w.} satisfies (2). Then Xo.r.~ contains com-  

plemented subspaces isomorphic to Io and L (co for p = o~). 

PROOF. For  l~ or co, just  choose  a subsequence  {w.~} such that  Y.~ w~"~-~)< 

~. Then  {e.~} is equiva len t  to the natural  basis of  Xp,~.~.~, and so is equiva len t  to 

the unit  vec to r  basis of  lp or Co. 

For  L, choose  Ej such that  /3j = Y-.~E, w~.~/~-r)- -> 1. This  is possible,  since 

E~.~ w~ "/~-') = ~. Le t  {/~j} be as in Propos i t ion  3.1. Then  the subspace  spanned 

by  {/~j} is i sometr ic  to Xo,~,~, which is i somorphic  to It. 

REMARK. Propos i t ion  3.1 answers  a ques t ion  raised by Lindens t rauss :  Is 

there  a nonsymmet r i c  uncondi t ional  basis such that  eve ry  block basis of  

cons tan t  coefficients  spans a comple ted  subspace?  The  answer  is yes,  since 

the natural  basis of  X ..... is such an example .  The  basis is not  symmet r ic ,  since 

it has a subsequence  equivalent  to the unit vec to r  basis of  co, which is clearly 

not  equiva len t  to the natural  basis of  X ...... 

THEOREM 3.3. Suppose w, w' satisfy (2). Then Xp .... and Xo,..~, are isomor- 

phic. Moreover, suppose {e.}, {e~} are the respective natural bases. Then {e~} is 

equivalent to a block basis {/~} of {e.}, where {h~} is as in (3). Thus the natural 

basis o[ Xp...~, is equivalent to a block basis of  {e.}, whose span is com- 

plemented in Xp ..... 

PROOF. The  same as that of  T h e o r e m  13 in [10]. 

F rom now on, we deno te  X o .... by Xpj if w satisfies (2). We are going to show 

that the natural  basis of  Xp,, is a modular  basis. 

First  cons ider  the case ~ > p  > r => 1. Le t  w = {w.} sat isfy (2). Since w. ---~ 0, 

we may assume w. =< 1 for  all n. Define 

Mw,.(x) = max{x p, w~x ~} 

= I w ~ x r x ~ [0, w ;/~-.)1 
t x p x => w ;/(~-r~. 

It is c lear  that  Mw.. is an Orlicz func t ion  in K(p,  r). If there  is no danger  of  

confus ion ,  we shall wri te  M. for  M .... No t e  that  Y~ M.  (Ix. I) < ~ if and only  if 

max  {(E Ix. I p ),tp, (E w~ Ix. I r)'t '} < oo. So the unit  vec to r s  of  t{M. } are equiva len t  

to the natural  basis of  Xp,r. The  only Orlicz sequence  spaces  conta ined  in lp ~) lr 

are lo and l,. So Xp,r does  not  conta in  any  o ther  Orlicz sequence  spaces  besides  

lp and It. H o w e v e r ,  we shall show later in Sec.  4 that  X*. ,  conta ins  l, fo r  eve ry  
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t ~ [ q , s ] ,  where ( l / p ) + ( l / q ) = l  and ( l / r ) + ( l / s ) = l .  So Xp., cannot be 

complemented in lp ~) l,, otherwise I, Q I, would contain X* ,  and hence every 

1,, t E[q,s].  
Now consider X .... Define 

M.(x ) = max{x", wrnx r } 

= ~w~x" x ~ [0, w'. ''"-r'] 
[ x" x >- w'.""-'). 

Then, EM.((lY.I)/t)<~ if and only if 

max {(~] w~. [y. lrt-r) I/', Z [Y"I "t="} < ~  for all t >0 .  

This implies the unit vector basis of c{M,} is equivalent to the block basis 

f. + w.g. of (c{N.}Oi,)=, where N.(x)  = x" and {f.}, {g.} are the unit vector 

bases of c{N.} and l, respectively. It is not hard to show that the unit vector 

bases of c{N,} and Co are equivalent. So the unit vector basis of c{M.} is 

equivalent to the natural basis of X .... 

Reasoning as in the case p < ~, we can show that the only spaces with a 

symmetric basis contained in X~., are Co and l,, and that X~., is not com- 

plemented in Co(~lr. 

4. The spaces Y.s 

Let ~=>p > r >  1, (l /p)+(1/q) = 1 and ( l / r )+( l / s )=  1. We are going to 

construct the dual Yq.~ of X,., in this section, and show that Y,s is a universal 

element in K(s, q), i.e. every/{M.} such that {M.} E K(s, q) is isomorphic to a 

subspace of Y,s. 

First, we compute M*. Suppose w = {w.} satisfies (2) and w. =< 1 for all n. 

Let  p < ~. Then 

M*'(x) = 

X s - I  

x ~ [0, rw'."'-~q 
r s-I w." 

w~ q-''/~'-q~ x ~ [rw: "~-q~, pw~./~-q~] 

xq-1 >. l(s-q) qpq_~ x pw~. 

Hence, 
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X s 
x E [0, rw~/~'-~] 

s r  s - I  W s 

(sq -s )l(s --q ) W Snq l(s --q ) s l(s - q  ) - [ r w .  , p w ~  1 ~ ' - ~ ]  W .  X X E  

X q X ~ p w  s / ( s - q ) .  
qp q-i 
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M*, being made up of three pieces, is very inconvenient to work with. So we 

replace {M*}by an equivalent sequence of ~o-functions {N,}. 

Let  

N , ( x )  = min{x% w ; ' x ' }  

= ~w-/x" x ~ [0, w~./"-~'] 
[ X q X ~ Wsn j ( s -q )  

Then N ~ ( x ) = s r ' - ' M * ( x )  on [0, w~"~-~']. M * ( x ) / N . ( x )  is increasing on 

[w~ "'-q,, pw~/"-q>], so 

1 < M * ( x ) <  1 
sr ~-' = N , ( x )  = qpq-' 

on [w: I"-' ' ,  pw:~"-"]. Finally, N , ( x )  = qp~-' M* (x )  on [pw:~"-",oo). Thus 

qpq-t M*(x )  <= N , ( x )  <-_ sq ' - '  M*(x )  

for all x => 0. By Proposition 2.3, {M*} ~ {N,}. 

Now consider the case p = oo. 

M *(x )  = 

X s 

s r  s - I  W ~  

s /(sn - s  - n  ) sn l(sn - s  - n  ) 
W n  X - -  W n  

(n _ ,Jl~n-"/~"-~) x . /~ . -1 )  

x U [0, rw~ "-'~/( . . . . . .  ~] 

x ~ [rw~ n-''~ . . . . . .  ~, nw~ "-'"~ . . . . . .  >] 

X ~ .  ~"  n w  (n s n - s ) l ( s n - s - n ) .  

In this case, it is imperative to replace M* by something more civilized. Let  

N . ( x )  = min{x, w:SxS~ 

= { WxX" - x~[O,w:/"-'q 
- X >= w ~ / ( s - ' ) .  

Then N , ( x ) = s r ' - ' M * ( x )  on [0, w;/"- 'q.  M * ( x ) / N , ( x )  

[.w~ ~"-'', 1]. So 
is increasing on 
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1 < M * ( x ) < .  1 )n_ . /~ ._ ,=<n - 1 
sr s:' = N . ( x )  = tn - n 

s / ( s - , )  on [w. , 1]. Thus, 

M * ( x )  <= N . ( x )  <= sr s-' M * ( x )  

<1 

for all x E[0,  1]. As i n f M * ( 1 ) > 0 ,  i n f N . ( l ) > 0 ,  Proposition 2.3 (a) implies 

{M*} - {N,}. 
Note that for 1 < q < 2, Y2.q is the space Xq of [10]. 

We now generalize Rosenthal 's result that Xq contains l, for all t E [q, 2]. We 

want to show that Y,s contains I, for all t E [q, s ]. As we no longer have s = 2, 

we cannot use anything involving Lp-spaces. So we have to have new 

techniques. One thing comes to mind immediately. Lindenstrauss and Tzafriri 

have proved in Theorem 1 of [5] that every Orlicz sequence space IM contains l, 

for every t in the interval of M. We want to apply the techniques of that proof. 

The proof in [5] is as follows. Suppose t is in the interval of M. Let 

1 f '  M ( b , x u )  G . ( x ) = ~ , ,  . u,+, du, 

where {a,}, {b,} are sequences of positive numbers satisfying certain con- 

vergence properties, and 

f ' M ( b . u )  
C. = . u,+, du. 

Then {G.(x)} is shown to converge pointwise to x'.  As 

~ M ( s x )  } 
G,  E C M , b . = c o n v  L M ( s  ) : 0 < s - < b ,  , x 'E ,n>o  cM.,. 

By Th. 1 of [4], IM contains a subspace isomorphic to l,. 

We imitate this argument for /{N,} .  We put 

1 fo' N. (b.xu) G . ( x )  =-~,  . u,+, du, 

and then prove that {G, (x)} converges pointwise to x'. However,  we do not 

have any result corresponding to Th. ! of [4]. In fact, no such general result 

seems to be possible for modular sequence spaces. However,  for the special 

case of I{N.}, we do have something similar. This is the motivation for 

Proposition 4.2. 
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First  note  that  we no longer  have  to dist inguish be tween  the cases  p < ~ and 

p = oo. For  pr/(p - r) = sq/(s - q),  while r = s/(s - l). So (2) can be wri t ten as 

lim w, = 0, E w~ q~" q~= ~. We also require w. =< I. So let (4) be 

(4) w , E ( 0 , 1 ] ,  lim w , = 0 ,  ~'~w~.q/~s-q)=o¢. 

LEMr~A 4.1. Suppose a E ( O ,  1], [3>0,  and u E ( O , l ] .  Let  N , ( x ) =  

min{u-SxS, x"}. Then, there exist 3' > 0  and v E ( 0 ,  1] such that 

aN,([3x)  = N v ( v x ) ,  

- s  s q where N~(x )=  min{v x ,x  }. 

PROOF. a N ,  ([3 x )  = min {au-S [3~ x ~, a[3 ~x q }. Put y = a '/q [3 a n d  v = 

a"~"~-"~'~u. S i n c e  ( l / q ) - ( l / s ) > O ,  a n d  a E ( 0 ,  1], v ~ ( 0 ,  1]. Then  

N~(yx)  = min{v-~y~x~,  y " x " }  

= m i n { a u  s[3~xS, a[3"x"} = aN,([3x) .  Q.E.D.  

PROPOSITION 4.2. Let w = { w , }  be a sequence satisfying w, ~ ( 0 ,  1] and 

l imw,  = 0 .  Let N, . ,  be the q~-function m i n { w , ' x  ", x"}. Suppose {L} is a 

sequence of  nonnegative continuous functions. Put 

lfo, G. (x) = ~--~ N~. . (b .xu) f . (u )du ,  
n 

where a., b. > 0, and 

f' C~ = N~. . (b .u ) f . (u )du .  
n 

Then G. is a ~o-function between s and q. Moreover, we have a sequence of  

positive numbers v = {v.}, with lim v. = 0 and v. <= 1, and ~-functions 

k n + !  

H , ( x )  = ~ No,, (~/,x), 
i ~ k N + !  

where k, < k2 < • • • are positive integers, such that 

sup ltd.(x)- H.(x)l < 
n = l  x E [ 0 , 1 ]  

Hence Yq,~ contains a subspace isomorphic to l{G,}. 

PROOF, It is trivial to  show that  G,  is a q~-function be tween  s and q, 

The  R iemann  sums of  
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f ' Nw..(b, xu ) I , (u )du  
n 

c o n v e r g e  un i fo rmly  with r e spec t  to x on [0, 1] by  Dini ' s  T h e o r e m .  So g iven n, 

we  have  a par t i t ion a ,  = Uo< u~ < • • • < u~. = 1 such that  fo r  all x E [0, !], 

I,, Ui-i) (5) (3. (x) - Y~ C~' Nw,.(b.x u,).f.(u,)(u, - < 2-". 
i = l  

Put/3..~ = b.u.  and a..~ = C-.'[.(u,)(u~ - u~_,). S i n c e / .  is bounded  on [a. ,  !], and 

C.  is a cons tan t ,  by  taking the par t i t ion fine enough ,  we  can a s s u m e  a.,, =< 1. So 
we can  apply  L e m m a  4.1 to  obta in  3'.., and v,., E (0, 1] s u c h  tha t  

(6) C ; '  L (u,)(u, - u,-,) Nw., (b,  x u,) = N,~.,(7,., x ) ,  

where  N~,(x)  = min {v ~.; x ~, x"  }. Le t  k, = 0, and k. = ZL5,' j, for  n > 1. I f  k. < l <= 

k,.~,  let v, = v,,,_~., 7, = 7.. ,-k.,  and N=., = N.O.,-k.. Thus  by  the definit ion o f  v,., in 
L e m m a  4.1, l im v, = 0. (5) and (6) imply  that 

G . ( x ) -  ~"+' x)  (7) ~] N~,,( 71 < 2-". 
I = k n + l  

k s Putt ing H . ( x ) =  Y-t~x.+, N~.~(7,x), we have  the des i red  result .  

By  Propos i t ion  2.3 (b), {(3,} ~ {H,}. As  I{H,}  is i somorph ic  to a s u b s p a c e  of  

l{No.~}, so i s / {G ,} .  Final ly,  i{N..,} is e i ther  I, or  Y,.,. Fo r  if ~ v~"" ' - " J<  oo, then  

X ,  .... ~ l,, and  so l{No.~} ~ l,, which is con ta ined  in Y,, .  If  E v~ "1"-"~= 0% then  

v = {v~} satisfies (2), and l{Noj} ~ Y,.~ by T h e o r e m  3.3. Q.E .D.  

COROLLARY 4.3. Let w = {w"..} be a double sequence o/posi t ive  numbers 

satis[ying w,.., <-_ 1, and l im . . . . .  w"., = 0. Let [".,, G"., be as in Proposition 4.2. 

Suppose for each m and x E [0, 1], 

lira G". . (x  ) = G " ( x  ). 

Then Yq., contains a subspace isomorphic to I{Gm}. 

ProoF.  {G. , . ,}E K ( s , q )  by Propos i t ion  4.2, and {G,,.,} is no rmal i zed .  By  

T h e o r e m  2.5 (b), f o r  each  m, there  is an n ( m )  such tha t  

sup  IG , , . , , " , ( x ) -  G . ( x ) l  < 2-" .  
xE[0,1} 

By Proposition 4.2, we have H.,.<m~ of the form Z . ~ .  No.. (7. x), where {Era } are 
disjoint finite subsets of Z +, such that 
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sup IC..,.,.,,(x ) - H~.°,..(x )I < ~. 
m = ,  x E[O, I ]  

So E~,=,sup.~to.,jlG.~(x)-H.,. .c..(x)l<o o and {G.,}~{H.,,.~..}. This im- 

mediately shows that l{G,.} is isomorphic to a subspace  of Yq,~. 

REMARK. We can say more about  the isomorphic  imbedding of l{Gm} into 

Y.s, where l{Gm} is as in the corollary. Fix w = {w.} satisfying (4). Suppose 

v = {v.} is another  sequence satisfying (4). Then by Theorem 3.3, the natural 

basis of Xp .... is equivalent  to a block basis of the natural basis of Xp ..... and the 

span of the block basis is complemented  in Xp ..... This implies that the dual 

basis of Xp .... is also a block basis of  the dual basis of Xp ..... In other  words,  the 

unit vector  basis of l{No.. } is equivalent  to a block basis of the unit vector  basis 

of l{Nw,.}. So the unit vector  basis of l{Gm} is equivalent  to a block basis of the 

unit vector  basis of l{Nw..} = Y.s. 

We can now prove  the result we promised.  

PROPOSITION 4.4. 1, is isomorphic to a subspace o f  Yq,. if and only if 

q<--t<=s. 

PROOF. "only if": 

{ N . } ~ K ( s , q ) .  So by Proposit ion 2.6 (b), t E[q , s ] .  

"if" :  

We already proved that l 0 and lr are complemented  subspaces  of Xp.r. So lq 

and Is are complemented  subspaces  of Yq.,. Let  t E (q, s). 

Take a. @ (0, 1], a.  ~ O, b. "-q'" . • = a .  , and w . = a  (s-q~js Then w . - - * O  and 

w. _-< 1. Let  

where 

i f' N~(b]xu) G .  ( x ) = -~ .  . - ~  - -, d u ,  

f ' N . ( b . u )  
C. = . u'+' du. 

Our aim of course  is to prove  lim._= G. (x) = x'  for  all x, and so by Corollary 

4.3, l, can be imbedded in Yq.,. 
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G. (x) = ~--~- ~o. a ~ - ' b ~ x ' u  . . . .  ' d u  

1 f~  b ~ x ~ u , _ , _ , d u  
+ ~ Mb.x 

1 ) - ,  q - ~  . . . .  t , , ~  n ,  ,, 
= - -  u I,,7, ° C. [(s - t a .  b . x  

IsraelJ. Math., 

1 
+~--~. [(q - t ) - '  b~x  q uq-'l~.tb.. 

_ 1 [ s - q  x '  b~xq  
C. (s - - t ~ i - q )  ~ q - t 

Put x = l, and let n--~ oo. Then 

s - t a'. ' " - " -q~  . 

s - q  
lim 6". = 
, ~  ( s  - t ) ( t  - q )  ' 

since b~ and a', - ' " - " - 4 '  both converge to 0. So for all x, 

~in~G,(x ) = x ' .  Q.E.D. 

We now prove that every  Orlicz sequence space IF, where F E K ( s ,  q) ,  can 

be imbedded into Yq,,. The proof is a modification of the above proof,  and is 

inspired by the proof of Theorem 3.1 in [12]. 

THEOREM 4.5. Let  F be an Orlicz funct ion,  and  let 1 <- q < s < ~.  Then Iv is 

i somorphic  to a subspace  o f  Yq,~ if  and  only  if  F is equivalent  to an Orlicz 

func t ion  G ~ K ( s, q ). 

PROOF. "only if": 

This follows immediately from Proposition 2.6 (b). 

" i f " :  

We have already proved lq, is are isomorphic to subspaces of Y,,. So assume 

F E K ( s , q ) ,  F( I )  = 1, and F not equivalent to x" or x ". By Corollary 2.2, we 

can further  assume that F ( x ) / x  ~ is a ~-function.  Put P ( x ) =  

x -<~t~-~" F ( x ~ - q ~ ) .  Then P is a ~-function.  Also, P ( x ) / x  = x - ~ " - ~ "  F ( x  ~"~-~>) 

is a decreasing function. So by Theorem 2.1 (b), there exists a concave 

~-funct ion Q, with continuous second derivative, such that 

(8) 4 P ( x ) > = Q ( x ) > = P ( x )  for  all x->_0. 

Let  a . - -*0 ,  b. = a~  ~-2q~ms-q~, and w. = a~ -q~/~. Let  
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- (s - q) u q-'-2~ N . ( b . x u )  Q"(a ~-~ b~. -~ u~-~)du, 

s -q  q - s  q ~$ C. = - ( s - q ) u q - ~ - 2 " N . ( b . u ) Q " ( a .  b .  u )du. 
n 
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and 

dv = - ( s  - q)aU~b~.- 'u q-'-' du, 

X s ybx ~ q 2q -2s G . ( x ) = ~ -  ."-~ a,, b2.S-qQ"(v)dv 

X q franS - q b n q  --s +-~. ~_~ a2.q-2"b2.S-~vQ"(v)dv 

x ~ f~'-" x ~ f o°'-"~.'~ = - -  Q"(v)dv + vQ"(v)dv 
c .  .,_s -~. ,- ,  

X ~ 
= ~ [Q' (xs-")  - Q,(b~-~)] 

X a 
+ - ~  [a~-~b~-~Q'(aU"b~-~)-x~-~Q'(x  ~ q)] 

X q  fx'-q 
Q'(v)dv  

q - -S  ! S - - q  q - -S  = - C . ' x ~ Q ' ( b ~ . - s ) + C - . ' x ~ a ~ . - ~ b .  Q ( a .  b.  ) 

+ C-. 'xqQ(x~-q) - C: 'x ,Q(a~.- ,b~.-~).  

Put x = l ,  and let n ~ o o .  Q is concave.  So Q(x)/x>=Q'(x)>=O. Q is a 

q~-function, so l i m ~ o Q ( X ) = 0  and l i m ~ o x Q ' ( x ) = O .  Also, we can assume 

l im~=Q' (x )  = 0, as the behaviour at o~ is irrelevant. Noting that 

= s - q  q - s  Put v a .  b .  u q-5.Then 

1 fa I -- --q q--S q--S)du. +--~" . /~b.--(S q)b~.u2"-2S-'xqQ"(a~ b .  u 

As Q" is non-positive and continuous, the hypothesis  of Proposition 4.2 is 

satisfied. So we only have to prove that {G,} converges pointwise to a function 

equivalent to F. 

l /- o./~b. 
G.(x )  = ~ .  ]j~. - ( s  -q)aq.-Sb~.u'-S- 'x~Q"(a~-'b~.-Su'-~)du 
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a~-q b q -s = a~¢S-~,l~s-q~___~O, 

we have lim,~® C, = Q(I) .  So 

X q 
lim,~® G, (x) = 0 - ~  Q (x, -9 ). 

Denote this limit by G(x).  By Corollary 4.3, Y,s 

isomorphic to l~. 

By (8), 

1 
O(l )  

Substituting P(x ~-~) = F(x ) /x  ~, we have 

F(x)  < G(x)  < 4F(x )  
Q ( 1 ) =  = Q(I )  for all x_>-0, 

Since F( I )  = G(1) = 1, Q(1) must be between 1 and 4. 

Hence  

(9) ~ F(x)  <= G(x)  <= 4F(x)  for  all x _-> 0. 

So F ~ G and Y,,s contains a subspace isomorphic to Iv. 

. <  4x" 
- -  xqP(x s-") <-G(x)=-~(-~ P(x  s-q) for all 

IsraelJ. Math., 

contains a subspace 

X>0.-- 

Q.E.D. 

REraARK. Combining Proposition 4.2 and Theorem 4.5, we have the follow- 

ing representation of an Orlicz function F. Every  Orlicz function F E K(s ,  q) 

for  some s < ~  is equivalent to a uniform limit of functions of the form 

El'zg,.+, N~(a,x), where N~(x) = min{wTSxS, x"}, w = {w,} satisfies (4), a, > 0 ,  

p~<p2< "" ", and ~ , f " = ~ ' . + l N i ( a l )  = 1. 

COROLLAI~V 4.6. Let {F,, } be a sequence of Orlicz functions and {Fro } E 

K ( s , q )  for some s < ~ .  Then Yo.~ contains a subspace isomorphic to l{Fm}. 

PROOF. Without loss of generality, assume {F,,} to be normalized and 

assume F,, is not equivalent to x" for  all m. By Corollary 2.2, we can assume 

x-"Fr,(X) to be a ~o-function for all m. Then by Theorem 4.5, we have 

G,...(x) = - ~ . .  N,. . .(b, . . .xu)f , . . .(u)du 
m , n  

such that lim. ~® G,... (x) = G,. (x) for  all x _-> O, and 

¼ F , . ( x ) < G , . ( x ) < 4 F , . ( x )  for  all x - 0 .  
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So {Gin}- {Fro}. As I{G,,,} can be imbedded into Yq.~ by Corollary 4.3, so can 

l{Fm). 

REMARKS. (i) Corollary 4.6 can also be proved as follows: Lindenstrauss 

showed that by an argument similar to that of Proposition 3 in [4], every 

modular sequence space l {Fro }, {Fro } E K (s, q),  can be imbedded into an Orlicz 

sequence space IF, where F E K (s,q).  So by Theorem 4.5, l{Fm} is isomorphic 

to a subspace of Y~.,. (ii) Unlike Theorem 4.5, the necessity part of Corollary 

4.6 is false. This is a consequence of the following example: 

EXAMPLE. Suppose F, (x) = x p' for  all i. Then l{F,} is called a Nakano space, 

which was studied by Nakano in [9]. Let  s E [1, 2), b, > 0, and 

~ b ~ ( l + b . )  (,/(b°,=E. I 

n = l  

Suppose kj < k2< . . .  are positive integers, and p~ = s(I + b.) for  all k, < i _-< 

k,÷,. We are going to show that the Nakano s p a c e / { E }  can be imbedded in L. 

Moreover,  if 

( k . + , -  k . )  > n E~;'-' 

then the unit vector  basis of I{F,} is not s-dominating. This shows that for 

s E [1, 2), l{F~} can be imbedded into Yq,~, but {F~} is not equivalent to any 

sequence in K(s,q). 
Let  I~, be the n-dimensional space with the p-norm.  By our choice of b, and 

"E "~ / k ,-k. k., it is not hard to show that/{F~} and t ~ .~rg~.~), are (1 + e) ' / ' - isomorphic.  

As s < 2  and b. --,0, we can assume s( l  +b.)_-<2 for all n. So l,(,+h°, can be 

isometrically imbedded into L, for s U [1, 2). L, is an LF,.,+~ space for all t~ > 0. 
[k  l k x  This immediately shows that (E Q ~r~h°r), can be imbedded into L. 

Finally, suppose (k~+~ - k,) _-> n "ho'-~. We are going to show that there is some 

{a,}el{E} such that E[a,I ~ = ~. In fact,  we can simply take a~ = n-'(k,.,- k,)-', 

for  k,<i<-k,+~. On the other hand, if {G,}eK(q,s) and {x,}el{G~}, then 

EIx,[ • <oo. So {F~} cannot be equivalent to any {G~}EK(s,q). 

REMARKS. (I) Yq.s is a quotient of 1~ Ol~- Thus the class of subspaces of 

quotients of Iq G l~ contains all /{Fro}, where {F~}E K(s, q). In particular, it 

contains every /,, t C [q, s]. So it is not possible to generalize Johnson and 

Zippin's result in [2] to the spaces lq @ L. 

(ii) Theorem 4.5 shows that every  separable Orlicz sequence space is a 

quotient space of Xp., for  some 1 < r < p _-< ~. 
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(iii) The space Yq.2 is just the space Xq of [10], for q > 1. Proposition 4.4 then 

becomes the same as Cor. 4.2 of [l l] ,  although our proof does not use 

probability theory. Theorem 4.5, together with corollary to Th. 4 of [10], gives 

an imbedding of every Orlicz sequence space Iv, F ~ K(2, q), 2 > q > 1, into 

Lq, and we only use probability theory for the imbedding of Xq into Lq. 
In [l l], the imbedding of Iv into Xq is obtained by another way. Th. IV.3 of 

[l] shows that every Orlicz sequence space Iv, F ~ K(2, q), 2 > q > 1, can be 
imbedded into Lq as the span of a sequence of independent random variables. 

By Cot. 4.1 of [l l] ,  IF can be imbedded into Xq. 
(iv) It would be desirable to obtain a direct imbedding of Yi.2 into L 1. For by 

the remark at the end of Corollary 4.6, Y~.2 can be imbedded into an Orlicz 

sequence space IF, where F E K(l ,2) .  By Th. IV.3 of [I], IF can be imbedded 

into L,. However, this method seems rather involved. 
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