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ON A CLASS OF UNIVERSAL MODULAR
SEQUENCE SPACES

BY

JOSEPH Y. T. WOO'

ABSTRACT

The class of all subspaces of quotient spaces of I, @/, contains all separable
Orlicz sequence spaces.

1. Introduction

Recently, Johnson and Zippin [2] proved that if a subspace of a quotient
space of [,, p > 1, has a basis, then it can be decomposed into the form (@ G.),,
where dim G, < «. It is natural to inquire whether this structure theorem can be
generalized to the next simplest class of spaces, namely [, @/,. The answer
is no. Rosenthal [11] showed that if 1 < g <2, then the class of subspaces of
quotients of {, @I, contains every Orlicz sequence space {w, where

(%) % is increasing, Mx(f) is decreasing.

In particular, the class of subspaces of quotients of [, @ [, contains /, for all
r €[q, 2]. So no structure theorem similar to that obtained by Johnson and
Zippin is possible.

ProBLEM. Can Rosenthal’s result be generalized to the case [, @ [, where
I=q<s<x?

The purpose of this paper is to answer the above problem in the affirmative.
In order to analyze this problem, we have to describe Rosenthal’s result more
fully. In [10], he obtained an %,-space X,,p >2, which is spanned by a
sequence of independent random variables in L,. X, is also isomorphic to a
subspace of I, @l.. Let X, = X*, where 1/p +1/q = 1. Then every Orlicz
sequence space Iy, where M satisfies (*), can be imbedded into X, (11], and
thus is a subspace of a quotient of [, @ .. The proofs of these results use
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probabilistic methods, and since Khintchine’s Inequality is used in a nontrivial
way, we cannot replace 2 by s.

However, there is another way to look at the spaces X,,p >2. X, has an
unconditional basis {e.}, and Xx.e, converges if and only if
S max {|x.[?, wixi} <o, where w={w,} is a sequence of positive numbers
satisfying limw, =0 and T wZ'?"? =, Put M,(x) = max{x”, w2 x’} for x = 0.
Then M, is an Orlicz function, and so X, is a modular sequence space (see Sec.
2 for definitions). We can now generalize X, to a space X,,, where x>p >r =
1. We simply define X,, to be the modular sequence space [{M,}, where
M. (x)=max{x",w,x"}. Our aim is to prove that if Y,, = X%,, where 1/p +
1/g=1, r>1, and 1/r+1/s =1, then Y,, contains every Orlicz sequence
space [y, where
Mix)

M(x) . . . . .
L+ IS increasing, == is decreasing.

(+)

As X, is a subspace of I, ® I, this would solve the problem.

As is apparent from the above, we shall use the techniques of modular
sequence spaces to solve the problem. Detailed accounts of the properties of
such spaces can be found in [13] and [14]. A summary of the important results
used in this paper is given in Sec. 2, mostly without proofs. Section 3 is devoted
to the construction of the spaces X, ., while the main results are proved in Sec.
4. We prove that Y, is universal in the class of modular sequence spaces
{{M.}, where M, satisfies (*+) for all but finitely many n’s. In particular, Y,
contains all I, where M satisfies (**). Thus the problem is solved.

As byproducts, we also obtain the following results. The first is a representa-
tion of Orlicz functions. Suppose M is an Orlicz function satisfying (**}. Then
M is equivalent to the uniform limit of functions of the form Zfx ., Ni(ax),
where k, < k,<--- are positive integers, a; =0, and N;(x) =min{w"x*,x},
with w; > 0 and lim w; = 0. The other result is an answer in the affirmative to a
question raised by Lindenstrauss: Does there exist a nonsymmetric uncondi-
tional basis so that the span of every block of constant coefficients is
complemented? The answer is provided by the natural basis of X.., which has
this property.

2. Definitions, notations and preliminaries

Let M : [0, %)—[0,%) be a continuous strictly increasing function satisfying
M(©0) =0and lim,_.M(x)=0. M is called a ¢-function. Note that in [6] and [8]
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M is only required to be monotonic increasing, and M(x) >0 for all x >0.
However, nothing is gained by this more general condition as far as this paper
is concerned. In fact by restricting to strictly increasing functions, we now have
M™":[0,0)—[0,2), and M~' is also a ¢-function. If M is convex, then M is
called an Orlicz function.

DEerINITION. Let0=r <p ==, A p-function M is said to be between p and r
if (M(x))/x" is increasing on (0,«), and (M(x))/x? is decreasing on (0,x) for
p <. Following the terminology of [1], we let K(p,r) be the set of all
¢-functions between p and r.

Note that every ¢-function is in K(«,0), every Orlicz function is in K(x, 1),
and every concave ¢-function is in K(1,0). If p,=p,, and r,=r,, then
K{(p2,r) CK(p1, 1).

The following theorem of Matuszewska is of fundamental importance. As it
is stated in a different form in 2.7 of {7], we give the proof here.

TueoreM 2.1. (Matuszewska) (a) Let M € K(p, 1}, where p = . Then there
exists an Orlicz function N € K(p,1), with continuous second derivative, such
that

M(%c)éN(x)éM(x) for all x = 0.

(b) Let M & K(l,r), where r =0. Then there exists a concave @-function
N € K(1,r), with continuous second derivative, such that

M(x)=Nx)=4M(x) for all x = 0.

Proor. (a) Let F(x)= [ (M(¢))/tdt. As M € K(p, 1), (M(t))/t is increasing
on (0, ). Hence F is an Orlicz function, and F has a continuous derivative. It is
not hard to show that F € K(p, 1). By monotonicity of (M(t))/t, we have

_ M@ _ ["M@), _
M(x)=x e =L : dt = F(x)

2 [MO)y, ;gM<2>=M(£).

2

So we have F € K(p, 1), with continuous derivative, such that

Mx)2 F(x)= M(%) for all x = 0.



196 J. Y. T. WOO Israel J. Math.,

Now apply the above to F instead of M, and we obtain an Orlicz function
N € K(p, 1), with continuous second derivative, such that

F(x)= N(x) 2 F(g) for all x =0,

ie. M(x)éN(x)gM(ﬁ) for all x = 0.

(b) Consider the ¢-function M ~'. It is easy to show that M~' € K(r™', 1). Hence
by (a), we have an Orlicz function F € K(r™', 1), with continuous second
derivative, such that

X

M"(x)zF(x);M“(4

) for all x = 0.
Let N = F~'. Then N is a concave ¢ -function between 1 and r, with continuous
second derivative, and satisfies

M(x)=Nx)=4M(x) for all x = 0. Q.E.D.

DeriNiTiON. Let M, N be ¢-functions. M is said to be equivalent to
N (M ~ N)if there exist positive numbers a, b, K, L, x, such that

KM(ax)=N(x)=LM(bx)
for all x €[0, xo].

CoroLLARY 2.2. Let M € K(p,r), where r > 0. Suppose M is not equivalent
to x". Then there exists an Orlicz function F € K (pr~',1), with continuous
second derivative, such that

@ M(x" |4 =F(x)=Mx") for all x =0,

(b) F'(x) is strictly increasing and continuous,

(¢) (F(x))/x is a ¢-function.

Thus we have a function N € K(p,r), with continuous second derivative,
such that

M(%)éN(x)gM(x) forall xz0,

and (N(x))/x" is a ¢-function.

Proor. Let G(x)=M(x"). Then GE€K(pr~',1). By Matuszewska’s
Theorem, we have an Orlicz function F € K(pr~', 1), with continuous second
derivative, such that
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G()Z‘) = F(x)= G(x) for all x >0.

M is not equivalent to x” iff G is not equivalent tox. As F is equivalent to G, F
is not equivalent to x. F is convex, so F' and (F(x))/x must be strictly
increasing, and lim,_o(F(x))/x =0. Thus (F(x))/x is a ¢-function. Putting
N(x) = F(x"), we have the desired result. Q.E.D.

We now define ¢-spaces and modular sequence spaces. Let {M.} be a
sequence of @-functions. Let 1{M.,} be the set of all sequences {x.} satisfying
3 M, (|x.}/t) <= for some t >0. Let

{x I = inf{t >0:3 M{Et—l) = t} i

Then |- || is a quasinorm on [{M,}, and (/{M..},]|- |} is an F-space. We call such
kind of spaces ¢-spaces. If all the M,’s are equal, we have the generalized
Orlicz sequence space considered in [6] and [8].

If all the M, ’s are Orlicz functions, then /[{M,} can be normed by

sl = int {1 >0: 3 m(Eel) =]

U{M.} I - ) is called a modular sequence space. The spaces (1{M.},]| - ) and
U{M.}, il - Il are isomorphic under the identity map. So whenever we are
considering sequences of Orlicz functions, ||| will actually denote || - [,

unless otherwise stated.

A sequence of ¢-functions {M,} is said to be normalized if M,(1) =1 for all
n. If {M,}is not normalized, let N,,(x) = M, (a.x), where M, (a.) = 1. Then {N,}
is normalized and the map T:{{N,}—{{M,} given by T{x.} =~{a,.x.‘} is an
isomorphism. So if we are only considering the linear topological properties of
1{M.,}, we can always assume {M.} to be normalized.

The most important concept connected with ¢ -spaces is that of equivalence.

DeriviTION.  Let {M.}, {N.} be sequences of ¢-functions, {M.} is said to be
equivalent to {N,} (M.}~ {N,.}) if I{M,}=I{N,} as sets.

It is easy to show, using the closed graph theorem, that if {M,} ~ {N..}, then
the identity map I:[{M.}— [{N,} is an isomorphism.

ProrosiTionN 2.3, Let {M,}, {N.} be sequences of ¢-functions satisfying one
of the following conditions:

(a) There exist x,, x, such that inf M, (x,) >0, inf N,(x;) >0, and there exist
K,L,a b,x, >0, no€ Z" such that for all n > n, and x €[0, x,),
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KM, (ax)= N,(x)= LM, (bx).

(b) There exist x,,x, such that inf M,(x,) >0 and inf N,.(x,) >0, and for
some a = max{x, Xz},

o

>, sup [M.(x)— N.(x)] <.

n=1 ye[0.]

Then {M,}~{N.,}.

DermniTION.  Let {M, } be a sequence of ¢-functions, and let 0=r <p =,
We say that {M,} is between p and r, if M, € K(p, r) for all but finitely many
n’s. We again denote the set of all {M,} between p and r by K(p,r).

ProposiTION 2.4. Let {M,} be a sequence of g-functions. Then the following
are equivalent -
(@) (M.} K(p,r).
. all
® M. e Kiptrt) for (2 )t e 0,)
(c) There exists n,>0 such that for all A €[0,1], x =20 and n > n,,

APM.(x)= M, (Ax) =AM, (x).

If M, is absolutely continuous for all n, then the above are equivalent to:
(d) There exists n, such that

for all n > n, and x >0 such that M (x) exists.

Tueorem 2.5. (Lindberg) Let {M.} be a normalized sequence of ¢-functions
(Orlicz functions), and {M.} €& K(p,r) for some 0 <r <p <. Then

(a) {M.} is uniformly equicontinuous and uniformly bounded on [0,1].

(b) There exists a subsequence {M,} and a ¢-function (Orlicz function)
M € K(p,r) such that

i sup [M,, (x)— M(x)| <.

k=1 xefo.1

(¢) I{M,} contains a complemented subspace isomorphic to ly.

If {M,.} € K(p, r) for some p <, it is not hard to show that the unit vectors
of [{M,} form an unconditional basis. If M € K(p, r) for some p < x, then the
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unit vectors of [, form a symmetric basis. Now suppose Iy and /{M, } are both
Banach spaces, and /y is isomorphic to a subspace of /{M.,}. Then by the
Bessaga-Peiczynski Theorem, the unit vectors of Iy is equivalent to a block
basis of /{M, }. We can assume {M,}, and the bases, to be normalized. Let {e,},
{f.} be the unit vector bases of l., [{M.,}, respectively. Then we have a, =0,
and natural numbers j, <j, < --- such that {e.} is equivalent to the normalized
block basis {Zki.(aaf}izi. It is not hard to show that this block basis is
equivalent to the unit vector basis of the modular sequence space /{N.}, where

Jiey

(1 Ne(x)= > M, (a.x).

n=j+I1

By passing to a subsequence of {N.}, and using Theorem 2.5, we have

x

> sup [M(x)— Ni(x)| <.

k=1 cefou

We thus have the following proposition:

ProrosiTioN 2.6. (Lindberg) (a) Let {M.} be a normalized sequence of
Orlicz functions between p and r, where 1 = r <p <o, Suppose M is an Orlicz
function such that lv is isomorphic to a subspace of [{M,}. Then there exists a
sequence {N.}, satisfying (1), such that

£

Y sup [M(x)— Ni(x)| <.

k=1 ceglo.)

(b) Let {M.}, M be as in (a). Then M is equivalent to an Orlicz function in
K(p,r).

Let {M.,} be a sequence of Orlicz functions, none of which is equivalent to
the function x. Then we can form the Young complement M* of M,.i.e. M*is
an Orlicz function satisfying

M¥'(y)=sup M.(x),

XEy

where M, is the right derivative.
Let ¢{M.,} be the set

{{x,.}e l{M,.}:ZM,.(jxt—”l) <o for all ¢ >o}.

Then ¢{M.} is a closed subspace of /{M.,}, and the unit vectors form an
unconditional basis of ¢{M.,}.
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ProrosiTioN 2.7. Let {M,} be a sequence of Orlicz functions.

@) c{M.}=I{M.,} if {M.}€ K(p,1) for some p <,

(b) Suppose none of the M s is equivalent to x. Then c{M,}* is isomorphic to
H{M1}.

(¢) Let {M,}E€ K(p, 1) for some p <x, and none of the M s is equivalent to
x. Then I{M,}* is isomorphic to |{M}}.

3. The spaces X,

We are going to generalize the spaces X,,p >2, of [10] in this section. We
then show that our generalizations are modular sequence spaces. A by-product
of our considerations of the properties of these spaces is that we have
answered in the affirmative a question raised by Lindenstrauss: Does there
exist a non-symmetric basis such that every block of constant coefficients
spans a complemented subspace?

Let o>p >rz=1, and let {f.}, {g.} be the unit vector bases of /, and |,
respectively. Let w = {w,} be a sequence of positive numbers, and let e, =
fr + Wag.. We define X .. to be span {e.} in (I, ® I,)-. {e.} is called the natural
basis of X,... If we replace I, by ¢, in the above definition, we obtain a
subspace of (co®I,)~, denoted by X.,...

It is not hard to see that {e,} is equivalent to the unit vector basis of I, if
Zw,”'" " <« (and equivalent to the unit vector basis of ¢, if Zw/; < in the
case p = «), On the other hand, if inf w, >0, then X,..... is isomorphic to /.. We
thus have the following cases:

Case (i). infw,>0and X,,. ~ 1.

Case (ii). Sw?'® " <o and X,,. ~1, (or co).

Case (iii). {n €Z": w, = €} is infinite, and

E w;;r/(p~r)< o,

W <e€

Then X,,. ~ 1, @I (or co@ I, for p = ).
Case (iv). inf w, =0 and =, <. w5 ™" = for all € >0.
The simplest case for which (iv) can occur is when

@ lim w, =0 and D>, w5 " =0,

(Zw,’.=w for p=°°.)

Our aim is to show that if w, w' satisfy (2), then X, ~ Xp.rw'
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ProposITION 3.1. Let w=Zp >r=1, and let {e.} be the natural basis of
X,rw- Suppose {E;} is a family of disjoint finite subsets of Z*. Let

h,- — 2 w;/(p—r)en (: 2 €n forp =oo)

n€E,; nekE;

@) b= 3, wie )" (= hforp =)

meE;

Pp—nipr \r
B = ( > w‘,i”“’"’) <= ( > wZ) forp = oo).
n€E,

n€E;

Then the block basis {h;} is isometrically equivalent to the natural basis of
X, .p, where B ={B;}, and there exists a projection of norm 1 of X,... onto the
closed linear span of {h;} in X,,..

Proor. The proof is a generalization of that of Lemma 7 in [10]. First
consider the case p <. Then

. i —1/p
“2 /\Ikl" = max {[Z i/\’ IP wi;ff(ﬂ‘f) ( 2 w:'rl(pfr)) ] ,
i=

n€E; mEeEE;

© =rip \ir
|7 wyPrite—n) pritp—r)
2 3 wrwee (g, we) 7]
© tip e 1/r
= max{(E| |)\,-|") , (2 |A; ’B,’~> } .
1= 1=

So {#;} is isometrically equivalent to the natural basis of X,
We now define P: X,.,. — [A;], with |P]|=1. Let k € Z"*. Define

k o -1
P<§I )‘"en) = ,Zl (z /\"W;Pr—r)/(p—r)> ( 2 wﬁr/(p—r)> hj.

n€E, n€E;

The sum on the right is a finite sum. So P is well defined.

k hnd P 1/p
= pritp—r) prip-r)
I17{ 3 A 1 = max{ | 5 S wt 5 wien]”,

neE; meE;
© —r ir
pri(p-r),
2 )]

meE;

P
z AW ("pr—r)l(p -r)

neE;

r

pr—r)i(p—r)
ZAnwnprr p-r

neE;

pritp—r)
2 wh

neE;

P , 1-plip
ri(p—r)
(Z werle ) ] ,

n€E;

r 1-rVr
( Z w ‘;r/(p—r)) ] }
neE

(pr—-r)itp—r)
AW
n€E;

(pr-r)i(p—r)
n
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[E:: <:§,|A ,p>< Z Wﬁ”‘p_">p—l(2 wﬁ”(rn)'_"]””’
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lI/\

nE€E; n€E,;

|
[2 (Z ) ( ) wﬁ'ﬂ»ﬂ)"' ( S wzr,@_,,)'-'} w}

nEE; n€E;

i Anla)| =

i=1 nEE;

k
E Anlyl| .

n=1

It is clear that we can extend P by

P("i;] Anen) = 2 < 2 /\ W(Pr~r)/(p r)) ( 2 wt"'/(p—r))#I hj

neﬁ
and we have

“P (..i:. A,.e..) =

It is obvious that P is a projection, and ||P| = 1.
Now consider the case p = . Then

= max {suplA,l, (,:1 B})Ih} .

So {A;} is isometrically equivalent to the natural basis of X..,
As in the case p <, we define

P(Zae) = 5 (Z,0me) (3, ) o

Then P is a projection, and

”P(E Anen

= max {sup

Ez\w

neE,

<";Ei w,'.)_l,
(2 (2 )]
s foupsup o[£ 5, 2ove{ (3, we) T}
ax {Sup I, [i (; )(; w,’,)’“’ (Z W,’.)I"']lf,}

= max {supl)\.. (é )m}=||)3)\..e,. Il | Q.E.D.

EAw,.

nE€E,

p

llA

lll\

IA
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CoroLLARY 3.2. Suppose w ={w,} satisfies (2). Then X,,.. contains com-
plemented subspaces isomorphic to I, and |, (co for p = ),

Proor. For I, or c,, just choose a subsequence {w,,} such that 3, w?/*™ " <
0. Then {e,, } is equivalent to the natural basis of X ...}, and so is equivalent to
the unit vector basis of [, or c,.

For I, choose E; such that B; =Z,ce,wh’® 7= 1. This is possible, since

pritp—r)

-1 Wh = . Let {h;} be as in Proposition 3.1. Then the subspace spanned
by {A;} is isometric to X,,s, which is isomorphic to I,.

REMARK. Proposition 3.1 answers a question raised by Lindenstrauss: Is
there a nonsymmetric unconditional basis such that every block basis of
constant coefficients spans a completed subspace? The answer is yes, since
the natural basis of X..,. is such an example. The basis is not symmetric, since
it has a subsequence equivalent to the unit vector basis of co, which is clearly
not equivalent to the natural basis of X.. ...

THeEOREM 3.3. Suppose w,w' satisfy (2). Then X,,.. and X,,.. are isomor-
phic. Moreover, suppose {e.}, {e} are the respective natural bases. Then {el} is
equivalent to a block basis {h;} of {e.}, where {h;} is as in (3). Thus the natural
basis of X,.. is equivalent to a block basis of {e.}. whose span is com-
plemented in X,,.,.

Proor. The same as that of Theorem 13 in [10].

From now on, we denote X,,.. by X,, if w satisfies (2). We are going to show
that the natural basis of X, is a modular basis.

First consider the case o >p >r = 1. Let w = {w,} satisfy (2). Since w, =0,
we may assume w, =1 for all n. Define

M, . (x)=max{x?, wix"}

_{w,’,x’ x €[0,wi®™]

xp x= w:l/(p—r).

It is clear that M., is an Orlicz function in K(p, r). If there is no danger of
confusion, we shall write M, for M, .. Note that £ M, (jx.]) <= if and only if
max {(Z |x.7)"?, (Ewr |x.]")"""} < . So the unit vectors of /{M,} are equivalent
to the natural basis of X, ,. The only Orlicz sequence spaces contained in I, ® [,
are l, and l.. So X,, does not contain any other Orlicz sequence spaces besides
[, and I.. However, we shall show later in Sec. 4 that X%, contains [, for every
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t €[g,s], where (1/p)+(/q)=1 and (1/r)+(1/s)=1. So X,, cannot be
complemented in I, ® [,, otherwise I, ® [, would contain X%, and hence every
I, tE[q,s).

Now consider X..,. Define

M, (x)=max{x",w,x"}

_(wix' x E[0,w,/ "™
T ox" x =z wi,

Then, 2 M, ((|y.|)/t) < if and only if

max{(z Wi |Yn

This implies the unit vector basis of ¢{M.,} is equivalent to the block basis
fo + Wagn of (c{N.}®L)-, where N.(x)=x" and {f.}, {g.} are the unit vector
bases of ¢{N,} and I, respectively. It is not hard to show that the unit vector
bases of ¢{N.,} and ¢, are equivalent. So the unit vector basis of c{M,} is
equivalent to the natural basis of X.,.

Reasoning as in the case p <, we can show that the only spaces with a
symmetric basis contained in X., are ¢, and /,, and that X., is not com-
plemented in co @ L.

1/r
't_') , Elyn|"t_'"}<°°forallt>0.

4. The spaces Y,

Let «=p>r>1, (1/p)+({/q)=1 and (1/r)+(1/s)=1. We are going to
construct the dual Y,, of X,, in this section, and show that Y, is a universal
element in K (s, q), i.e. every [{M,} such that {M, } € K (s, q) is isomorphic to a
subspace of Y,..

First, we compute M*%. Suppose w = {w,} satisfies (2) and w, =1 for all n.
Let p <, Then

s—1

X Hs—-ay
rs—lw; xe[o’rwisql
M’,'f’(X) — w("sq-ﬂ)/(s—q) x € [rw;vll(s—q)’ pw:/(s—q)]
x?! s
— X Zpwi/c9,
q-1 n
qp

Hence,
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s

X -
s—r-s—_l—;v—s X € [0, erl/(s q)]
n
-~ - - sis— Hs—q)
M’,‘:(X) — Wf.sq (s q)x — w:q/(s q) x € [rwnl(t q>’ pr. (s—gq ]
x4 sHs-q)
EI—)-q—_—l X =pw, .

M7, being made up of three pieces, is very inconvenient to work with. So we
replace {M*}by an equivalent sequence of ¢-functions {N,}.
Let

N.(x)=min{x, w_ x"}

sis—q)

w;sxs X 6[0, w-:'/(s—q)]
x9 xXZ=w,

Then N.(x)=sr'""'M#*x) on [0,w“ ®]. M*(x)/N.(x) is increasing on

[w:/(s—q)’ pwil(s—q)]’ SO

1 SM’!.‘(x)S 1
sr'” T Na(x) ~gp*™!

sl(s-r)

on [w.*™”, pw;“ "], Finally, N,(x)=qp*™' M*(x) on [pw3“ ", ). Thus
ap° ' MY¥x)=EN,(x)=sq° ' M*(x)

for all x = 0. By Proposition 2.3, {M*} ~{N,}.
Now consider the case p = .

Sr:—l W’ X E [0, er,m_s)/(S"_s_")]
n
M’:(X) = W:,I(s"—s_")x — wf"‘/(“"—"") xE [rwi'sn—s)/(sn—s—n), nw(nsn-S)l(sn—s—n)]
(n — l)n—n/(n—l)x n/(n—1) X ; nwf.’"""/""“‘"’,

In this case, it is imperative to replace M * by something more civilized. Let

N.(x)=min{x, w. x"}

X - - sis—1)

_[wixt x €0, wi¢™"]
X=Zw,

Then N,(x)=sr'"'M%¥(x) on [0,w;*""]. M*(x)/N.(x) is increasing on
[w“™", 11. So



206 J. Y. T. WOO Israel J. Math.,

1 <M=":(x)<(n—l)n‘""""’§n_1§1

st T Na(x) = n

on [wi“™" 1). Thus,

M¥X)=EN,(x)=sr'""M*(x)

for all x €[0, 1]. As inf M*(1) >0, inf N, (1) >0, Proposition 2.3 (a) implies
{M %}~ {N.}.

Note that for 1 <q <2, Y, is the space X, of [10].

We now generalize Rosenthal’s result that X, contains /, for all t € [q, 2]. We
want to show that Y., contains /, forall t €[q,s]. As we no longer have s =2,
we cannot use anything involving L,-spaces. So we have to have new
techniques. One thing comes to mind immediately. Lindenstrauss and Tzafriri
have proved in Theorem 1 of [5] that every Orlicz sequence space I contains /
for every t in the interval of M. We want to apply the techniques of that proof.

The proof in [5] is as follows. Suppose ¢ is in the interval of M. Let

1
where {a.}, {b.} are sequences of positive numbers satisfying certain con-
vergence properties, and

C, = f Mtff’:.“) du.

Then {G,.(x)} is shown to converge pointwise to x'. As

{M(sx)

G. € Cup, =cony MG5)

0<s éb,.}, x'€ N Cu.
$>0
By Th. 1 of [4], I« contains a subspace isomorphic to [.
We imitate this argument for /{N.}. We put

_ 1 (" Ni(buxu)
Gn(x) - C ul+l du’

and then prove that {G.(x)} converges pointwise to x’. However, we do not
have any result corresponding to Th. 1 of [4]. In fact, no such general resulit
seems to be possible for modular sequence spaces. However, for the special
case of /{N.}, we do have something similar. This is the motivation for
Proposition 4.2.
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First note that we no longer have to distinguish between the cases p < and
p ==, For pri(p —r)=sq/(s — q), while r = s/(s —1). So (2) can be written as
limw, =0, Swi“ *=w We also require w, =1. So let (4) be

) Wa €(0,1], lim w, =0, Swi =0,

LemMma 4.1. Suppose a€(0,1], >0, and uc(,1]. Let N,(x)=
min{u""x*,x?}. Then, there exist y >0 and v € (0, 1] such that

aN,(Bx)= N,(yx),
where N,(x)=min{v *x°*, x}.

ProoF. aN,(Bx)=min{au *B°x’, aBf’x?}. Put y=a"B and v=
a0, Since (1/g)—(1/s)>0, and a €(0, 1], v €(0, 1]. Then
N.(yx)=min{v " y°x°, y*x9}
=minf{au 'B’'x°, afx} = aN,(Bx). Q.E.D.

ProposiTioN 4.2. Let w ={w,} be a sequence satisfying w, € (0, 1] and
limw, =0. Let N.. be the o-function min{w.’x*, x?}. Suppose {f.} is a
sequence of nonnegative continuous functions. Put

G.(x) =& f " Nuw(buxtt) fu (u)du,

where a., b, >0, and

C. = J” N.n(b.u) f.(u)du.

Then G. is a p-function between s and q. Moreover, we have a sequence of
positive numbers v = {v,}, with imv, =0 and v, =1, and ¢-functions
kn*l

H,.(x)= E Nv,i (‘Yix),

i=knat
where k, < k,<--- are positive integers, such that
> sup |Ga(x)— H.(x)| <.
n=1 ygl0,1]

Hence Y, contains a subspace isomorphic to 1{G,}.

Proor. It is trivial to show that G, is a ¢-function between s and gq.
The Riemann sums of
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f " N (bxtt) fu () du

converge uniformly with respect to x on [0, 1] by Dini’s Theorem. So given n,
we have a partition a, = uo<u, <---<u; =1 such that for all x €[0, 1],

’n
(5) G, (X) - Z C:I Nw,n(bnx ui)fn(ui)(ui —Ui)| <27

i=1
Put B.; = b.u;, and a.; = C3' f. (u; (u; — ;). Since {, is bounded on [a., 1], and
C. is a constant, by taking the partition fine enough, we can assume a,; = 1. So
we can apply Lemma 4.1 to obtain vy,; and v.; €(0,1] such that

(6) C;‘ fn(ui )(ui - ui—l) Nw.n(bnx ui) = N:i('Yn.ix)v

where NJ(x)=min{v,x*,x?}. Letk,=0,and k, =27/ j, forn > 1.If k, <[ =
knsi,let v = vy i, ¥ = ¥ mi-kp and Ny = N7i—i.. Thus by the definition of v,, in
Lemma 4.1, limv, = 0. (5) and (6) imply that

@) G"(x)_1=:2ﬂ+| No(px)| <2

Putting H,(x) = 2212+ N,,(y:x), we have the desired result.

By Proposition 2.3 (b), {G.} ~ {H.}. As [{H,} is isomorphic to a subspace of
I{N..}, so is I{G.}. Finally, [{N..} is either {, or Y.,. For if 2 v{¥®"¥ <, then
X,.ro ~ I, and so [{N,,} ~ l,, which is contained in Y,,. If Z v{%“"® =, then
v = {v} satisfies (2), and I/{N.,} ~ Y., by Theorem 3.3. Q.E.D.

CoroLLARY 4.3. Let w ={w..} be a double sequence of positive numbers
satisfying wm. = 1, and liMy u—c Wnn = 0. Let f.n, Gma be as in Proposition 4.2.
Suppose for each m and x €[0, 1],

lim Gun (x) = G (x).

Then Y, contains a subspace isomorphic to 1{G.}.

Proor. {G..} € K(s,q) by Proposition 4.2, and {G...} is normalized. By
Theorem 2.5 (b), for each m, there is an n{m) such that

sup |G,,,,.(,,.)(X) - G’" (x)l <27
x €[0,1}

By Proposition 4.2, we have H,, .(m, of the form Z,cg,, N..(y.x), where {E. } are
disjoint finite subsets of Z*, such that
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oc

Z sup IGM.n(m)(x) - Hm...(m)(x )| < %,

m=1 xef0,1)

SO 2: =1 Supx €[0.1) IGm (x) - Hm.n(m)(x)l < and {Gm} -~ {Hm,n(m)}- ThiS im'
mediately shows that 1{G,} is isomorphic to a subspace of Y,..

Remark. We can say more about the isomorphic imbedding of [{G.} into
Y,., where [{G,.} is as in the corollary. Fix w = {w,} satisfying (4). Suppose
v ={v.} is another sequence satisfying (4). Then by Theorem 3.3, the natural
basis of X, .. is equivalent to a block basis of the natural basis of X, and the
span of the block basis is complemented in X, .. This implies that the dual
basis of X, ,, is also a block basis of the dual basis of X,... In other words, the
unit vector basis of /{N,, } is equivalent to a block basis of the unit vector basis
of [{N...}. So the unit vector basis of /{G,.} is equivalent to a block basis of the
unit vector basis of [{N..}=Y,..

We can now prove the result we promised.

ProposiTiON 4.4. 1 is isomorphic to a subspace of Y,. if and only if

q=t=s.
Proor. “only if”:

{N.}E€ K(s,q). So by Proposition 2.6 (b), t € [q, s].

“if:

We already proved that I, and /. are complemented subspaces of X,,. So [,
and [, are complemented subspaces of Y,.. Let t €(q,s).

Take a, €(0, 1}, a, = 0, b, =a$ ", and w, =a$ . Then w, — 0 and
w, = 1. Let

(b.xu)

_1 [ N
Gn(x)_cn J'u,, ur+| du’

where

C..=j N—"'f%%—lﬁdu.

Our aim of course is to prove lim,... G.(x) = x* for all x, and so by Corollary
4.3, I, can be imbedded in Y.



210 J. Y. T. WOO Israel J. Math.,

1

Gn(x)=c

a,tb x
J al”bixtu T " du
an

1 J" -
+= bix‘u®"""du
Cn @ /bpx

1 el - s s E
—C—[(s—t) "ad b xtut T e
n

1
G,

1 s—q bix* x° sty ]
—__ 1_+_ . :1 s—t q) .
C. [(s—t)(t-q)x q-t s—1°

+

g =)' bax u" Loo.

Put x =1, and let n —>. Then

. _ s —q
hm ==t -a°

since b? and al '“ " both converge to 0. So for all x,
imG.(x)=x". Q.E.D.

We now prove that every Orlicz sequence space [z, where F € K(s,q), can
be imbedded into Y, .. The proof is a modification of the above proof, and is
inspired by the proof of Theorem 3.1 in [12].

THEOREM 4.5. Let F be an Orlicz function, and let 1 =q <s <. Then lgis
isomorphic to a subspace of Y, if and only if F is equivalent to an Orlicz
function G € K(s,q)-

Proof. ‘“‘only if”:
This follows immediately from Proposition 2.6 (b).

s

We have already proved [,, I, are isomorphic to subspaces of Y, .. So assume
F € K(s,q), F(1) =1, and F not equivalent to x“ or x°. By Corollary 2.2, we
can further assume that F(x)/x? is a ¢-function. Put P(x)=
x @ F(x " ~9) Then P is a ¢-function. Also, P(x)/x = x ¢/~ F(x 79
is a decreasing function. So by Theorem 2.1 (b), there exists a concave
¢-function Q, with continuous second derivative, such that

8) 4P(x)= Q(x)=P(x) for all x=0.

Let a,—0, b, =a& %@ and w, = a§ " Let
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Go(x) =2

t
C f (s =qQu " N(b.xu)Q"(ay  bI u"")du,
where
t
C, = j —(s—qyu? "N (b u)Q(a) b u?")du.
As Q" is non-positive and continuous, the hypothesis of Proposition 4.2 is

satisfied. So we only have to prove that {G.} converges pointwise to a function
equivalent to F.

a,/xb,
Ga(x) = lf —(s —q)at~biut " x Q@i bi ™ u " )du

C

1
e I Rt LU Sl A CERT SR
Cn Anlxbp

Put v =a;*b?u?". Then
dv=—(s—q)a; "bi™u*""du,

and

Gnlx) = é J’b q-s a'z'q_zsbf‘s-qQ”(D)dv

X7 [
+—C—J’ a?® = br Q" (v)dv
n Jx*79
a,s—ab a5

=£ J”J_I Q"(v)dv +é—qf . vQ"(v)dv

b7 *

X' e s—ay _ yi(pa-s
C. [Q'(x™)—=Q'(bi™)]

q
+ 2 (a3 QU@ b ) —x QT )

x? [ ,
+C., fa,ﬁ'"bn"*‘ Q’'(v)dv

=—-C,x*Q'(bi)+C.'x%a b2 Q' (arb7™)
+CxIQG - C' xQai b))

Put x=1, and let n — ©. Q is concave. So Q(x)/xZQ'(x)=0. Q is a
¢-function, so lim,—,Q(x)=0 and lim,_,x Q'(x) =0. Also, we can assume
lim,..Q’(x) =0, as the behaviour at « is irrelevant. Noting that
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a:9ph1 = a(q(:-q»/as—q)_)o

we have lim,... C, = Q(1). So

n-—»w

lim G, (x)=Qi(ql—)Q(x=-q).

Denote this limit by G(x). By Corollary 4.3, Y,, contains a subspace
isomorphic to Is.

By (8),
] q ~q s—q
Q(l) xP(x’ )<G(x)__Q(1) P(x°7) for all x =0.
Substituting P(x°"%) = F(x)/x“%, we have
F(x) 4F(x)
Q(l)"G( X)=E—=— o for all x =0.
Since F(1)=G(1) =1, Q(1) must be between 1 and 4.
Hence
9 iF(x)=G(x)=4F(x) for all x =0.
So F~ G and Y,, contains a subspace isomorphic to [ Q.E.D.

ReMarRk. Combining Proposition 4.2 and Theorem 4.5, we have the follow-
ing representation of an Orlicz function F. Every Orlicz function F € K (s, q)
for some s <« is equivalent to a uniform limit of functions of the form
2.";'+IN(a.x), where Ni(x)=min{w7"x°,x%}, w ={w;} satisfies (4), a; >0,
pi1<p:<---,and 2. Ni(a)=1.

CoroLLARY 4.6. Let {F,} be a sequence of Orlicz functions and {F,} €
K(s,q) for some s <. Then Y, contains a subspace isomorphic to I{F,}.

Proor. Without loss of generality, assume {F,} to be normalized and
assume F,, is not equivalent to x? for all m. By Corollary 2.2, we can assume
x?F,.(x) to be a ¢-function for all m. Then by Theorem 4.5, we have

mon XU) fron (U )dut

m.n m.n

such that lim, .. G,..(x) = G.(x) for all x =0, and

1Fn(x)=G.(x)=4F,(x) for all x =0.
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S0 {G.}~{F.}. As l{G,} can be imbedded into Y, by Corollary 4.3, so can
{F.}.

REeMARKS. (i) Corollary 4.6 can also be proved as follows: Lindenstrauss
showed that by an argument similar to that of Proposition 3 in [4], every
modular sequence space ! {F.},{F.} € K (s,q), can be imbedded into an Orlicz
sequence space lr, where F € K (s,q). So by Theorem 4.5, [{F..} is isomorphic
to a subspace of Y,,. (i) Unlike Theorem 4.5, the necessity part of Corollary
4.6 is false. This is a consequence of the following example:

ExampLE. Suppose F;(x) = x" for all i. Then [{F;} is called a Nakano space,
which was studied by Nakano in [9]. Let s €[1, 2), b, >0, and

> bu(1+b,) " =
n=1

Suppose k; <k,<--- are positive integers, and p; = s(1+b,) for all k, <i =
k.... We are going to show that the Nakano space [{F,} can be imbedded in /..
Moreover, if

(ki — k) Z n 0=

then the unit vector basis of /{F,} is not s-dominating. This shows that for
s €[1,2), l{F:} can be imbedded into Y,,, but {F;} is not equivalent to any
sequence in K(s,q).

Let [; be the n-dimensional space with the p-norm. By our choice of b, and
k., it is not hard to show that /{F;} and (£ ® [%:::%). are (1 + €)' -isomorphic.
As s <2 and b, — 0, we can assume s(1+b,)=2 for all n. So /-, can be
isometrically imbedded into L, for s €[1, 2). L, is an £. ., space for all § > 0.
This immediately shows that (@ I%i4%), can be imbedded into /..

Finally, suppose (k.. — k,) = n“"~'"'. We are going to show that there is some
{a:} el{F} such that Z|a;|' = «. In fact, we can simply take a; = n ""(k,., — k,)™
for k. <i =k,... On the other hand, if {G.}eK(q,s) and {x;}el{G}, then
Zlxi|* <. So {F;} cannot be equivalent to any {G:}eK(s,q).

ReMARkS. (i) Y,. is a quotient of {, ® L. Thus the class of subspaces of
quotients of I, @ [ contains all [{F..}, where {F,.} € K(s,q). In particular, it
contains every [, t €[q,s]. So it is not possible to generalize Johnson and
Zippin’s result in [2] to the spaces |, @ L.

(ii) Theorem 4.5 shows that every separable Orlicz sequence space is a
quotient space of X,,, for some 1<r <p =00,
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(iii) The space Y, is just the space X, of [10], for ¢ > 1. Proposition 4.4 then
becomes the same as Cor. 4.2 of [11], although our proof does not use
probability theory. Theorem 4.5, together with corollary to Th. 4 of [10], gives
an imbedding of every Orlicz sequence space [r, F € K(2,q), 2>q > 1, into
L,, and we only use probability theory for the imbedding of X, into L.

In [11], the imbedding of /- into X, is obtained by another way. Th. IV.3 of
[1] shows that every Orlicz sequence space I, F € K(2,q),2>q > 1, can be
imbedded into L, as the span of a sequence of independent random variables.
By Cor. 4.1 of [11], I can be imbedded into X,.

(iv) It would be desirable to obtain a direct imbedding of Y,.into L,. For by
the remark at the end of Corollary 4.6, Y,, can be imbedded into an Orlicz
sequence space lr, where F € K(1,2). By Th. IV.3 of [1], lr can be imbedded
into L,. However, this method seems rather involved.
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